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From the Chair 
Greetings from Madison.  

I have spent the last 2.5 months here at University of Wisconsin, Madison and I am also 

about to return home. Early last month we had the Digital Soil Morphometrics work-

shop. Pierre wrote a nice report about it in this issue. It is interesting that in the 1990s, 

soil scientists were encouraged not only to look and measure the profile, but there is 

much spatial variability that need to be captured. Now that we know much more about 

soil spatial variation and able to map it efficiently, we need to look back in the profile. 

At the workshop, there are several presentations that looked at detailed sub-mm to 

microscale resolution of a soil profile using digital camera, infrared, and laser imaging. 

We observed fine scale variability within a profile and most properties vary smoothly 

with depth. Are the horizons that we observed a simplification of reality? Questions 

were also asked, how do we sample a profile? Do we just simply take measurement 

along at a fixed interval along a transect. How about the lateral variation of a profile?  

My colleague Alfred takes the analogy of mapping a profile wall as mapping the land-

scape. Can spatial soil sampling theory be applied on a profile wall? Would you take 

random sample across a profile wall? We now rarely take sample across a transect to 

map the soil, so why do we still take transect sample in a profile? There is also discus-

sion about what is the operational size of a pedon. Some said it is 1 m2. Now that we are 

able to measure properties more efficiently using proximal sensors, it is time to go back 

to the profile and quantify more accurately the basic soil unit that we study. 

The organisation of Pedometrics 2015 is on its way, and we got quite a good response 

And even before we start Pedometrics 2015, the planning for Pedometrics 2017 is un-

derway. Gerard Heuvelink and colleagues kindly agreed to host the 2017 conference in 

Wageningen. The first pedometrics conference was held in Wageningen in 1992, and we 

will celebrate Pedometrics Silver Anniversary in 2017. 

I hope to see you all in beautiful Cordoba in September. 

Budi 
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Pedometrics 2015 
Thanks for submitting your abstracts. We have a 

good response and received more than 130 ab-

stracts. We hope that we will have a great confer-

ence. If you have submitted an abstract, you should 

receive a notification email regarding the ac-

ceptance.  

Student Awards 

We are glad, for the first time, we are offering stu-

dent awards to the conference, the awarded stu-

dents will receive free registration to present their 

work (worth 300 Euro).  

The pedometrics commission student award goes 

to: 

 Helen Metcalfe, Rothamsted Research, UK. 

“Use Of An Unbalanced Nested Sampling 

Scheme To Reveal Scale-Dependent Variation 

In Soil Properties” 

 Jason, Ackerson, texas A&M University, USA, 

“Continuous depth profiles of soil clay content 

from penetrometer-based in-situ visible near 

infrared spectroscopy”  

And the IUSS also provides awards to:  

 Boniface Massawe, from Tanzania, “Mapping 

Numerically Classified Soil Clusters Of Kil-

ombero Valley Using Machine Learning”  

 Benito Bonfatti, from Brazil, “A mechanistic 

model to predict soil depth in a plateau area 

of Rio Grande do Sul, Brazil”  

Keynote Speakers:  

 Gerard Heuvelink - Richard Webster Medal Winner 

2014: The uncertain soil in an uncertain future 

 Titia Mulder - Winner of Best Pedometrics Paper 2013: 

Pedometrics and large-extent digital soil mapping appli-

cations 

 Phillippe Baveye - Kodak Professor, Rensselaer Poly-

technic Institute: How research on microscale processes 

and ecosystem services leads to a fundamental rethink-

ing of soil measurements 

 Jaime Gomez-Hernandez - Professor of Hydrogeology, 

Universitat Politècnica de València: Ensemble Kalman 

filters for data assimilation in soil science 

 Jed Kaplan – Professor and Team Leader Atmosphere, 

Regolith, Vegetation at University of Lausanne: How can 

pedometrics improve the limited representation of soils 

in global earth system models? 

 Cristine Morgan – Professor of Soil Science, Texas A&M 

University: Relevance of Pedometrics to Global Soil 

Security 

 Richard Webster - Rothamsted Research: From Beckett 

to Krige: how Pedometrics took off 

 

Register Now  

Register now for Pedometrics 2015 in Cordoba, September 

15th-18th, 2015.   

More info at: https://sites.google.com/site/pedometrics2015/

home or www.pedometrics.org 
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Vote for 2014 Best Paper  

Dear fellow Pedometricians, 

The Pedometrics Awards committee for the best paper award 

(Grunwald, McBratney, Oliver, Rossiter, Yang) received a 

good response to our call for nominations, namely 18 inter-

esting and relevant papers. These were scored by the commit-

tee and the top five are now presented for your reading pleas-

ure and evaluation. 

Although we received nominations for papers in eight jour-

nals, the five rated best by the committee were all from Euro-

pean Journal of Soil Science (2) and Geoderma (3). Two pa-

pers deal mainly with sampling, one with improving existing 

soil maps, one with 3D mapping of soil properties, and one on 

numerical soil classification. 

There is a nice mix: geostatistics, sampling design, a pe-

dometrics computation toolkit, spatial scaling, and numerical 

methods for spectroscopy. All are quite novel in their own 

way, and will surely stimulate and educate the reader – but of 

course many of you will have already read the papers when 

they appeared back in 2014. 

The award will be presented at Pedometrics 2015, 14-18 

September in Córdoba (E). Since many of you take some 

time off in August, please send in your votes by 31 July 2015. 

This gives you three months to read these excellent papers. 

Please rank the papers in the “instant runoff” system: first 

choice, second choice... up till the last paper you are willing to 

vote for, i.e., the last paper that you think would deserve the 

award. Votes should then be sent to me 

(dgr2@cornell.edu) from a traceable e-mail address (to pre-

vent over-voting). I will apply the “instant runoff” system[1] 

to determine the winner. A co-author may vote for her/his 

own paper(s). 

The papers are listed here in order of DOI (so pedometrics is 

becoming bibliometric). (Papers published in Geoderma is 

Now OPEN ACCESS until end of July. ) 

 Odgers, N. P., Sun, W., McBratney, A. B., Minasny, B., & 

Clifford, D. (2014). Disaggregating and harmonising soil 

map units through resampled classification trees. Ge-

oderma, 214–215, 91–100. http://doi.org/10.1016/

j.geoderma.2013.09.024  

Abstract 

Legacy soil maps typically consist of a tessellation of polygon 

soil map unit delineations where the map units consist of a 

defined assemblage of soil classes assumed to exist in more-or

-less fixed proportions. There are several limitations in this 

kind of mapping approach that relate to the original intent of 

the soil survey, the effect of mapping scale, and the nature of 

soil polygon boundaries. Yet perhaps a more fundamental 

limitation is the fact that most of the time, the soil classes that 
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comprise the soil map units are not mapped individually: in 

effect their spatial distributions are unknown beyond the 

qualitative indications given in the accompanying soil map 

unit report. 

Spatial disaggregation of soil map units attempts to map the 

spatial distribution of the individual soil classes that comprise 

a legacy soil map. We developed an approach called 

“Disaggregation and Harmonisation of Soil Map Units 

Through Resampled Classification Trees” (DSMART). 

DSMART samples the polygons of a legacy soil map and uses 

classification trees to generate a number of realisations of the 

potential soil class distribution. The realisations are then 

used to estimate the probability of occurrence of the individu-

al soil classes. These estimates are mapped as raster grids, 

which can overcome some of the limitations of mapping scale 

and polygon boundaries inherent in the original legacy soil 

map. 

We demonstrate the DSMART approach on a legacy soil map 

from the former Dalrymple Shire in central Queensland, Aus-

tralia. We mapped the estimated probability of occurrence of 

the 71 soil classes in the legacy soil map, as well as the most 

probable soil class, second-most-probable soil class and the 

degree of confusion between them as determined by a confu-

sion index. Validation on 285 observed soil profiles indicated 

that for 48.4% of the validation profiles, the observed soil 

class was identified in the top three most probable soil clas-

ses.  

 

2. Hughes, P. A., McBratney, A. B., Minasny, B., & Camp-

bell, S. (2014). End members, end points and extra-

grades in numerical soil classification. Geoderma, 226–

227, 365–375. http://doi.org/10.1016/

j.geoderma.2014.03.010 

Abstract 

Soil classification has progressed with the introduction of 

computers in the mid 20th century to the point where algo-

rithms can be used to organise soil information into clusters 

that correspond with soil classes. Algorithms such as fuzzy-k 

means perform well, but can be biased by extreme data. Fuzzy

-k means with extragrades was devised to accommodate this 

problem but estimating the amount of extragrades can be 

challenging and can lead to dubious classifications. The idea 

of end members is discussed and it is concluded that end 

points, observations that represent the most extreme parts of 

the soil continuum, are useful in the identification of extra-

grades. We present and discuss a new clustering algorithm, 

akromeson which identifies extreme points in a given data set 

and converts them into pseudo clusters, which are then run 

concurrently with a semi-supervised fuzzy-k means algo-

rithm. We constructed a synthetic data set in order to com-

http://doi.org/10.1016/j.geoderma.2013.09.024
http://doi.org/10.1016/j.geoderma.2013.09.024


 

 

pare this new method to fuzzy-k means and fuzzy-k means 

with extragrades. It was able to correctly fix the positions of 

the centroids, (which was beyond the capacity of fuzzy-k  

means), and correctly estimated which of the data were genu-

ine extragrades, outperforming fuzzy-k means with extra-

grades. We then evaluated the performance of akromeson on 

a data set from the Edgeroi region of New South Wales, Aus-

tralia. The algorithm identified an extreme cluster on the 

periphery of the data, and a method was determined on how 

to use this new method to routinely find clusters. The ability 

to efficiently cluster data may provide an added advantage to 

pedologists generally and to stakeholders when they are as-

sessing land use practices, especially in regard to areas which 

exhibit extreme soil properties that require careful manage-

ment, which this algorithm is capable of detecting . 

 

3. Poggio, L., & Gimona, A. (2014). National scale 3D mod-

elling of soil organic carbon stocks with uncertainty 

propagation - An example from Scotland. Geoderma, 

232, 284–299. http://doi.org/10.1016/

j.geoderma.2014.05.004 

Abstract 

The variation of soil properties down a profile is usually con-

sidered continuous. The aim of this study was to develop and 

test a methodology to model the continuous vertical and lat-

eral distributions of SOC stocks in Scottish soils making ex-

plicit the modelling and spatial uncertainty of the results. A 

comparison with regression kriging and other depth function 

methods is provided to show that better performances can be 

achieved taking into account non-linear relationships be-

tween covariates and soil properties. The analysis was run for 

the whole of Scotland. The carbon stocks were calculated for 

each point, i.e. each horizon in each available profile. The 

stock value at each cell for each of the considered depth layers 

was defined using a hybrid GAM-geostatistical 3D model, 

combining: 1) the fitting of a GAM to estimate the trend of the 

variable, using a 3D smoother with related covariates; and 2) 

kriging or Gaussian simulations of GAM residuals as spatial 

component to account for local details. The use of GAM 

makes the approach flexible, because it is able to deal with 

both linear and non-linear relationships between soil proper-

ties and the considered covariates. The results confirmed that 

MODIS data are a useful source of information for DSM espe-

cially at national scale. When comparing the proposed ap-

proach with similar methods such as regression kriging, the 

results showed better agreement with the data in the valida-

tion set with a global R2 of 0.60. The median values obtained 

are comparable with the values reported from previous stud-

ies on stocks in Scotland using different methods. The uncer-

tainty is large indicating a wide range of credible values for 

each pixel.  

 

4. Brus, D. J. (2014). Statistical sampling approaches for 

soil monitoring. European Journal of Soil Science, 65(6), 

779–791. http://doi.org/10.1111/ejss.12176 

Abstract 

This paper describes three statistical sampling approaches for 
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regional soil monitoring, a design-based, a model-based and a 

hybrid approach. In the model-based approach a space-time 

model is exploited to predict global statistical parameters of 

interest such as the space-time mean. In the hybrid approach 

this model is a time-series model of the spatial means. In the 

design-based approach no model is used: estimates are model

-free. Full design-based inference requires that both sampling 

locations and times are selected by probability sampling, 

whereas the hybrid approach requires probability sampling of 

locations only. In a case study on soil eutrophication and 

acidification, a rotational panel design was implemented with 

probability sampling of locations and non-probability sam-

pling of times. The hybrid and model-based predictions of the 

space-time means and trend of the mean for pH and ammo-

nium at three depths in the soil profile were very similar. For 

pH the standard errors of the space-time means were about 

equal, but for ammonium the full model-based predictor was 

more precise than the hybrid predictor. For soil monitoring I 

advocate the selection of sampling locations by probability 

sampling so that the statistical inference approach is flexible. 

Selecting locations by a self-weighting probability sampling 

design ensures that the model-based predictor is not affected 

by selection bias. 

 

5. Lark, R. M., Rawlins, B. G., Robinson, D. A., Lebron, I., 

& Tye, A. M. (2014). Implications of short-range spatial 

variation of soil bulk density for adequate field-sampling 

protocols: methodology and results from two con-

trasting soils. European Journal of Soil Science, 65(6), 

803–814. http://doi.org/10.1111/ejss.12178 

Abstract 

Soil bulk density (BD) is measured during soil monitoring. 

Because it is spatially variable, an appropriate sampling pro-

tocol is required. This paper shows how information on short-

range variability can be used to quantify uncertainty of esti-

mates of mean BD and soil organic carbon on a volumetric 

basis (SOCv) at a sampling site with different sampling inten-

sities. We report results from two contrasting study areas, 

with mineral soil and with peat. More sites should be investi-

gated to develop robust protocols for national-scale monitor-

ing, but these results illustrate the methodology. A 20 × 20-

m2 monitoring site was considered and sampling protocols 

were evaluated under geostatistical models of our two study 

areas. At sites with local soil variability comparable to our 

mineral soil, sampling at 16 points (4 × 4 square grid of inter-

val 5 m) would achieve a root mean square error (RMSE) of 

the sample mean value of both BD and SOCv of less than 5% 

of the mean (topsoil and subsoil). Pedotransfer functions 

(PTFs) gave predictions of mean soil BD at a sample site, 

comparable to our study area on mineral soil, with similar 

precision to a single direct measurement of BD. On peat soils 

comparable to our second study area, the mean BD for the 

monitoring site at depth 0–50 cm would be estimated with 

D G Rossiter/ Vote for best paper 



 

 

Coupling spectral deconvolution and regression tree 

analysis for quantifying mineral abundances 

(b) 

(c) 

Figure 1: Data collection and analysis. a) Fieldwork Morocco: 

soil profile description; b) Laboratory measurements: X-ray 

diffraction; c) Laboratory measurements: Spectral measure-

ments 

Traditionally in environmental and geological studies, the char-

acterization (and quantification) of soil mineralogy is typically 

achieved using X-ray diffraction (XRD). However, spectroscopy 

has proven to be an efficient alternative for the determination 

of various soil properties, including soil mineralogy. The com-

bined application of both X-ray diffraction and Fourier Trans-

form Mid Infrared (MIR) spectroscopy has been successfully 

used for the characterization of both parent material and soil 

clay forming processes (Mavris et al. 2011). The use of Visible 

Near Infrared and Shortwave Infrared (VNIR/SWIR) can pro-

vide critical structural information on soil minerals. In this 

paper we demonstrated its use for simultaneous quantification 

of mineral abundances from complex mixtures.  

First of all, I want to thank you all for rewarding the work of 

my co-authors and me with the Pedometrics “Best paper 

award 2014” for the paper entitled Quantifying mineral abun-

dances of complex mixtures by coupling spectral deconvolu-

tion of SWIR spectra (2.1-2.4 µm) and regression tree analy-

sis. This research was part of my PhD entitled “Spectroscopy-

supported Digital Soil Mapping”. Here, it was demonstrated 

that remote and proximal sensing can support soil mapping 

surveys in the sampling design, obtaining estimates of soil 

properties and mapping the spatial distribution of soil prop-

erties. The awarded paper showed that proximal sensing can 

be used to obtain soil property information, i.e. quantitative 

estimates of the dominant mineralogy of soil samples.  

I was in the fortunate position to work together with several 

specialists in the field of mineralogy (Dr. Christian Mavris 

and Prof. Markus Egli, Department of Geography, University 

of Zürich, and Dr. Michael Plötze, ClayLab, Institute for Ge-

otechnical Engineering, ETH Zürich; Switzerland), remote 

and proximal sensing (Prof. Michael Schaepman, Remote 

Sensing Laboratories, Department of Geography, University 

of Zürich, and Raymond Kokaly, U.S. Geological Survey, Den-

ver, USA) and statistics (Dr. Sytze de Bruin, Laboratory for 

Geo-Information Science and Remote Sensing, Wageningen 

University, The Netherlands).  All people devoted their time 

in order to collect, analyze and advance the research concern-

ing quantifying mineral abundances within soil samples (Fig. 

1).      

(a) 

Titia Mulder, 

Infosol Unit at INRA Centre d’Orléans 
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simple. One identifies the expected absorption wavelengths and 

at these positions Gaussians are fitted which together are an 

approximation of the original measured spectrum. Each Gauss-

ian curve is described by a width, depth, asymmetry and satu-

ration parameter. These parameters vary depending on the 

composition of a mixture but also on the quantity of each con-

stituent. Previously, the parameters of the fitted Gaussians 

were being used in linear regression models to predict two 

minerals within a sample (Sunshine and Pieters, 1993). In our 

work we chose for regression tree analysis for prediction miner-

al abundances. Regression tree analysis allows dealing with 

nonlinearity and interactions between the EGO parameters 

which may improve the prediction accuracy.  

Figure 3: Illustration of spectral deconvolution.  

The method was first tested on samples collected in the field. 

The first results were promising, however, we did not know if 

there was an influence of pollution coming from e.g. presence 

of small quantities of other minerals or traces of organic mat-

ter. Therefore, we prepared samples with known abundances of 

the dominant minerals found in the field samples, being kaolin-

ite, dioctahedral mica, smectite, calcite and quartz. In addition, 

we also “polluted” some prepared samples with chlorite in or-

der to test the robustness of the method.  

Cross validation showed that the prepared samples of kaolinite, 

dioctahedral mica, smectite and calcite were predicted with a 

root mean square error (RMSE) less than 9 wt%. For the field 

samples, the RMSE was less than 8 wt% for calcite, dioctahe-

dral mica and kaolinite abundances (Figure. 4). Smectite could 

not be well predicted, which was attributed to spectral variation 

of the cations within the dioctahedral layered smectites. Substi-

tution of part of the quartz by chlorite at the prediction phase 

hardly affected the accuracy of the predicted mineral content; 

this suggests that the method is robust in handling the omis-

sion of minerals during the training phase. The degree of ex-

pression of absorption components was different between the 

field sample and the laboratory mixtures. This demonstrates 

that the method should be calibrated and trained on local sam-

ples. Concluding, our method allows the simultaneous quantifi-

cation of more than two minerals within a complex mixture and 

thereby enhances the perspectives of spectral analysis for min-

eral abundances.  

 

 

 

Detection of minerals having absorption features within the 

0.350–2.500 µm VNIR spectral range have been successfully 

obtained using linear spectral unmixing techniques. However, 

these analyses were limited to estimating the main compo-

nent within a sample having the most distinct absorption 

feature. Next, we employed the MICA-PRISM algorithm de-

veloped by R. Kokaly and his colleagues from the USGS 

(Clark et al., 2003). This allowed determining whether the 

sample originated from a calcite-rich or poor environment, in 

addition to the dominant mineral within a mixture (Mulder et 

al., 2012).  

Through the course of our research it was confirmed that the 

reflectance spectra of our mixtures was indeed typically a 

complex result from the combinations of the spectral charac-

teristics of the constituents. Depending on the composition, 

the abundance and the spatial arrangement of the minerals, 

the total reflectance resulting from the scattering of the min-

erals within the intimate mixture produces positional shifts, 

changes in intensity, disappearance of absorption features or 

changes in their shape (Clark et al., 1990). This is illustrated 

in Figure 2. The figure shows very clear absorption features 

for the spectral signatures of each mineral. However, when 

you mix them together in one sample most of these signatures 

disappear. Therefore, it was deemed necessary to employ a 

method that is better capable to deal with the non-linear scat-

tering behavior of the samples.  

 

Figure 2: (top) Reflectance of the linear mixed and measured 

reflectance of sample 41, (bottom) Reflectance of the pure 

minerals (abundance > 5%) present in a sample. The vertical 

lines indicate absorption features of the various minerals 

(after Mulder et al. (2012))  

Here, spectral deconvolution (SD) provided the answer to our 

research goal. SD involves modelling the total reflectance and 

the inference of absorption components within complex fea-

tures by fitting (modified) Gaussian curves to the absorption 

features and absorption components (Pompilio et al., 2009). 

The concept is presented in Figure 3. The principle is fairly 

Titia Mulder/Coupling spectral deconvolution and regression tree analysis for quantifying mineral abundances 
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Figure 4: Predicted relative mineral content (wt%) from the field experiment compared to the values obtained from the XRD anal-

ysis. The predicted mineralogy is presented by boxplots of the samples which were assigned to the terminal nodes of the regression 

tree (after Mulder et al., 2013) 

 

References 

Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High Spectral Resolution Reflectance Spectroscopy of Miner-

als. Journal of Geophysical Research 95(B8), 12653-12680. 

Clark, R.N., Swayze, G.A., Livo, K.E., Kokaly, R.F., Sutley, S.J., Dalton, J.B., McDougal, R.R., Gent, C.A., 2003. Imaging spectros-

copy: Earth and planetary remote sensing with the USGS 

Mavris, C., Plötze, M., Mirabella, A., Giaccai, D., Valboa, G., Egli, M., 2011. Clay mineral evolution along a soil chronosequence in 

an Alpine proglacial area. Geoderma 165(1), 106-117. 

Mulder, V.L., Plötze, M., de Bruin, S., Schaepman, M.E., Mavris, C., Kokaly, R., Egli, M.,  (2013). Quantifying mineral abundances 

of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1-2.4 µm) and regression tree analysis. Geoderma, 

(207) 279-290. DOI: 10.1016/j.geoderma.2013.05.011 

Mulder, V.L., de Bruin, S., Schaepman, M.E., 2012. Retrieval of composite mineralogy by VNIR spectroscopy. In: B. Minasny (Ed.), 

Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012. CRC Press, Syd-

ney, Australia, pp. 488. 

Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, M.A., Roush, T.L., 2009. Exponential Gaussian approach for spectral 

modeling: The EGO algorithm I. Band saturation. Icarus 201(2), 781-794. 

Sunshine, J.M., & Pieters, C.M. (1993). Estimating Modal Abundances from the spectra of natural and laboratory pyroxene mix-

tures using the Modified Gaussian Model. Journal of Geophysical Research, 98, 9075-9087 

 

 

Titia Mulder/Coupling spectral deconvolution and regression tree analysis for quantifying mineral abundances 

7 

T itia holds MSc degrees in Soil Science – Land Science and Geo-Information Science & Remote 

Sensing from Wageningen University (The Netherlands). In 2013, she obtained her PhD from 

Wageningen University, in close cooperation with Zürich University, with a thesis on spectroscopy-

supported digital soil mapping. Titia is a post-doctoral researcher within the Infosol Unit at INRA 

Centre d’Orléans and received an AgreenSkills’ fellowship for performing her research. Her research 

interests are in large-scale modelling and mapping of natural resources, thereby integrating data 

mining techniques, geostatistics and remote sensing.  



 

 

type, and catena group. Catena groups were created from exist-

ing soil maps. Latitude and longitude were also included as co-

variates because this study covered a large area and exhibited 

strong climate and vegetation trends. All covariates had a 30 m 

resolution. 

  

Figure 1. Study area in northeastern USA showing locations of 

100 cLHS sampling locations.  

 

We applied a 1 km buffer (2 km diameter) around each cLHS 

point, extracted the covariate values inside each buffer, calculat-

ed Gower’s dissimilarity index (Gower, 1971, Mallavan et al., 

2010) between the cLHS point and the covariate values, and 

converted dissimilarity to similarity by subtracting from 1. 

Gower’s dissimilarity index was chosen to calculate similarity 

because it can handle both categorical and continuous values.  

The resulting output was a raster where cell values inside each 

buffer area are a measure of similarity to the original cLHS point  

We anticipate this output will be useful in identifying areas to 

Conditioned Latin hypercube sampling (cLHS, Minasny and 

McBratney, 2006) identifies physical sampling locations that 

are optimized to represent the multivariate distribution of 

input environmental covariates. As long as it is possible to visit 

the exact physical location of each sampling point, the sam-

pling campaign will capture the variability of input covariates. 

However; In the event of restricted access (e.g., a locked gate) 

we need to know where to move the sampling location without 

jeopardizing the representativeness of the original cLHS point. 

This is a particular problem in areas where access is difficult 

and soil surveyors have traveled long distances. In this event, 

deciding not to sample at the location is not a viable option.  

When sampling in a rugged and remote area of the southern 

Philippines, Thomas et al. (2012) noted that the “main frustra-

tion with cLHS sampling is that it’s black-box nature” leaves 

the “surveyor unsure why the cLHS has chosen any given site”. 

This “prevents the soil surveyor from choosing alternative sites 

in the field when cLHS sites prove impossible to reach for prac-

tical reasons”. Thomas et al. (2012) suggest landscape stratifi-

cation, fuzzy clustering of the covariates, and cLHS of the re-

sulting fuzzy memberships.  

Kidd et al. (2015) faced similar operational constraints in Tas-

mania. Pre-defined cLHS sample locations, even with contin-

gency sites, proved difficult to implement in the field, with a 

variety of access issues making sampling slow and difficult. As 

an alternative they used a ‘relaxed’ sample design by sampling 

from fuzzy k-means covariate clusters. A map of clusters pro-

vided to soil sampling staff allowed difficult sites to be relocat-

ed within the same cluster, maintaining stratification. They 

found that this relaxed approach still adequately represented 

the covariate distribution while providing greater flexibility to 

field sampling staff. Clifford et al. (2014) modified this idea to 

flexible Latin hypercube sampling, which involves an optimiza-

tion process for selecting accessible sites in a region while still 

maintaining the LHS criteria. The flexible sampling algorithm 

produces an ordered list of alternative sites close to the prima-

ry target site . 

While the Flexible LHS is sound, it involves a complex compu-

tational procedure. An easier pragmatic option would be to 

calculate a similarity measure to the original cLHS within a 

given area around each cLHS point. Areas with high similarity 

to the original cLHS could then be identified and the sample 

location moved to these areas if needed . 

To test this idea, we used cLHS to identify 100 sampling loca-

tions for a coupled soil-vegetation study over approximately 

91,646 km2 in the northeastern USA (Figure. 1). Input environ-

mental covariates were elevation, slope, aspect, land cover 

Colby Brungard1 & Jamin Johanson2, 
1Utah State University 

2Dover-Foxcroft MLRA Soil Survey Office in Dover-Foxcroft ME. USA 

The gate’s locked! I can’t get to the exact sampling 
spot … can I sample nearby? 
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obtained by emailing Colby Brungard at envsoilco@gmail.com. 

Data necessary to run this code includes: the covariates used as 

input to cLHS, the actual cLHS points, and the desired buffer 

size.  

 

References: 

Clifford, D., Payne, J.E., Pringle, M.J., Searle, R., Butler, N., 

2014. Pragmatic soil survey design using flexible Latin hyper-

cube sampling. Comput. Geosci. 67, 62–68. doi:10.1016/

j.cageo.2014.03.005 

Gower, J.C., 1971. A General Coefficient of Similarity and Some 

of Its Properties. Biometrics 27, 857–871. 

doi:10.2307/2528823 

Kidd, D., Malone, B., McBratney, A., Minasny, B., Webb, M., 

2015. Operational sampling challenges to digital soil mapping 

in Tasmania, Australia. Geoderma Reg. 4, 1–10. doi:10.1016/

j.geodrs.2014.11.002 
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which a soil surveyor could move a sampling location and still 

remain relatively similar to the original cLHS point. Such deci-

sions would entail choosing an area (cell) that is accessible and 

that has a high enough similarity to the original cLHS point. 

We heuristically suggest a distance > 0.9 as a value for deciding 

if an area is similar enough, but this could be investigated fur-

ther by randomly sampling within similarity deciles and plot-

ting the resulting covariate distribution against the original 

cLHS covariate distribution.  

As the decision to move a sampling location must often be 

made in the field, we have found the GarmingCustomMap 

QGIS addon (https://hub.qgis.org/projects/

garmincustommap) useful for loading maps onto a GPS, and it 

may be possible to load the cLHS similarity index raster onto a 

Garmin GPS with custom map capabilities. This would then 

allow the soil surveyor to rapidly identify similar locations in 

the field in the event of restricted access.   

Complete and commented, but by no means polished, R code 

to implement Gower’s similarity index on cLHS points can be 

Colby Brungard & Jamin Johanson/ The gate’s locked! I can’t get to the exact sampling spot … can I sample nearby? 

Figure 2. Cell values potentially range from 0 (not similar) to 1 (perfectly similar), but in practice the lower limit, at 

least for our covariates and buffer area size, was ~ 0.25. 
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GlobalSoilMap got an Honourable Mention  

GlobalSoilMap project was recently awarded an Honorable Mention  by the 2015 International 

Data Rescue Award in Geosciences. Dominique Arrouays and Johan Leenaars submitted the applica-

tion with many inputs from researchers around the world. Dominique, the science coordinator of 

GlobaSoilMap, said that although we did not win he is pleased with a global recognition, and demon-

strated that this project has gathered sup-

port from various institutions around the 

world and some good examples have been 

achieved.  

C olby Brungard is a 

researcher at Utah 

State University, in Lo-

gan, UT. USA 

J amin Johanson is an NRCS

-Ecological Site Specialist 

at the Dover-Foxcroft MLRA 

Soil Survey Office in Dover-

Foxcroft ME. USA.  



 

 

Pedometricians’ Favourite Equations  

17 Equations that Changed the World is a book written by Ian Stewart in 2013. The author listed 17 most important mathematical 

equations that he thought have been a driving force behind nearly every aspect of our lives. Pedometricians have frequently used at 

least 8 of the equations in their works (can you recognise them?). Starting this issue, we asked some pedometricians on their fa-

vourite equations and why they love them. 
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Tom Bishop 

Standard error of the mean = σ/ sqrt(n)   

I love this equation because it is so simple and illustrates much about the issues we face in estimating a parameter about a popula-

tion. 

We have the numerator with a measure of variation so with more variation we have a larger std. error but to counter this is the 

denominator we have the number of observations so with more observations we can get smaller std. errors.  It exemplifies the 

tension or balance we as Pedometricians have to deal with – working in a world of variation which we can better explain or predict 

when we have more observations.  
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Gerard Heuvelink  

When Budi asked what is my favourite equation, I realised that 

I had never really thought about it. I did recall that the favour-

ite equation of many mathematicians is said to be Euler’s iden-

tity: 

 

It is their favourite because it unites the five most important 

mathematical symbols. Euler’s identity certainly is elegant and 

intriguing (although much of the intrigue is lost when realising 

that by definition eix = cos(x)+i sin(x)) but it has no practical 

use, and therefore I decided to look for another equation that 

could be my favourite. I ended up with the (simple) kriging 

variance equation: 

 

I chose it because it is much criticised by geostatisticians. It 

needs someone to stand up for it, and I am happy to do so, 

because it is criticised for the very same reason that I like it so 

much. 

The criticism is that the kriging variance does not depend on 

the data values. This, of course, is only partly true because the 

data values have been used to derive the covariance function 

(i.e. variogram), but the variogram and the spatial data config-

uration are indeed all that is needed to calculate it. Is that very 

wrong? No it is not, because it is a direct consequence of the 

geostatistical model that is assumed. Edzer Pebesma and I did 

numerical experiments that confirmed that under common 

assumptions the interpolation error does not depend on local 

spatial variation, in spite of what one would expect intuitively. 

If you do not like it, change your model, but do not throw away 

the kriging variance while keeping the kriging prediction. 

Sometimes mathematics gives us a present, and this is one of 

such cases: because the kriging variance does not depend on 

the data values, we can optimise spatial sampling designs and 

evaluate the propagation of interpolation errors through envi-

ronmental models prior to collecting the data. It is a godsend 

that should be relished, not condemned! 
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Alex McBratney  

I guess most people will say it is the variogram equation, but 

my favourite equation is the fuzzy k means (with extragrades) 

allocation equations.  

The above equation allows the polythetic allocation of new soil 

data into any existing soil classes.  

The first part of this equation calculates the memberships, m, 

in each of the k “regular” soil classes and the second part calcu-

lates the membership, m*, in the extragrade class. It has 2 pa-

rameters Φ, the degree of fuzziness and α the degree of outliers 

(extragrades) which can be estimated from the data. Evaluation 

of these equations requires the calculation of the Mahalanobis 

distance, d, from each centroid to the new individual.  

We are currently using this formulation to set up a Universal 

Soil Classification System with (some k=300) centroids derived 

from the ‘great group’ taxa of Soil Taxonomy, WRB and other 

national systems.  The centroids in the new system are de-

scribed by the depth functions (as fixed depth slices) of 22 soil 

properties, so some 400 properties in all – the Mahalanobis’ 

distance recognises the correlations between the properties.  

Hopefully field allocation of soil profiles using this equation 

will be a fast calculation rather than the traditional thumbing 

through of pages in an elaborate  key.  

Reference: 

McBratney, A. B. (1994). Allocation of new individuals to con-

tinuous soil classes. Australian Journal of Soil Research, 32(4), 

623-633.  
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Pedometricians’ Favourite Equations  

https://www.researchgate.net/publication/46629588_Is_the_ordinary_kriging_variance_a_proper_measure_of_interpolation_error


 

 

What soil is it?  

In June, we asked what soil is behind this famous scene in North by 

Northwest. Here are a couple of video clips that may help you identify 

the soil. Video 1 and Video 2.  

So here is the answer and winner(s). 

The scene from North by Northwest, where Thorhnhill getting off at 

the ‘Prairie Stop on Route 41’ and chased by a cropduster, was meant 

to be in Northern Indiana. However it was shot in California at Wasco, 

near Bakersfield along Garces Highway in Kern County, California. 

There is an article about it.  

The first guess by Aitor García Tomillo from UDC Spain as an alluvial 

(Entisol) soil from the Wasco Series. Rachel Downward from Lincoln, 

New Zealand also guessed it as Wasco, Coarse-Loamy, Mixed, Super-

active, Nonacid, Thermic Typic Torriorthents. 

But the most likely soil series is Nahrub rightly identified by David Rossiter, who said “If I had only looked at the photos I would 

still have guessed a semi-aridic moisture regimes, clayey but no obvious gilgai, dark epipedon but probably not thick enough to be 

mollic, maybe some salt content.” Minerva Dorantes from Purdue University also guessed it correctly. Fine, smectitic, calcareous, 

thermic Vertic Torriorthents. 

Well how did they know it? The key is Wikipedia and IMDB actually has the geographical coordinates (35°45′39″N 119°33′41″W), 

so that is a giveaway. The map unit identified it as 70% Nahrub and 20% Lethent (Typic Natrargids). It is also close to Garces se-

ries (Typic Natrargids).   

Honourable mention to Marco Angelini who used his pedological observation “I expected to find calcic feature in that soil. Looking 

at the second video, 40 second, you can see a blocky structure with carbonates as well. “Homayoun Fathollahzadeh  recognised the 

look as Inceptisol, probably with calcic horizon and more dry seasons. 

But no one commented that the corn looks fake. As the article said: Wasco High students "planted" cornstalks to simulate a corn-

field.  
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Pedometrics 2017  
Pedometrics will be celebrating its Silver Jubilee in 2017. The first pedometrics conference was held in Wageningen in 

September 1992. Planning for Pedometrics 2017 is underway to celebrate 25th anniversary at its birthplace. The Organis-

ing Committee (Gerard Heuvelink, Dick Brus, Bas Kempen, Ichsani Wheeler, Harm Bartholomeus, David Marcellis and 

Jetse Stoorvogel) will be organising the conference from 26 June to 2 July 2017 at Hof van Wageningen  which is the same 

location used in 1992! This will also be a joint conference with four of its Working Groups: 

1.            Digital Soil Mapping  

2.            Proximal Soil Sensing  

3.            Soil Monitoring  

4.            Modelling of Soil and Landscape Evolution 

Mark on your calendar now for this once in a lifetime important event! 

http://en.wikipedia.org/wiki/North_by_Northwest
http://en.wikipedia.org/wiki/North_by_Northwest
https://youtu.be/mEpT9QC3CNU
https://youtu.be/S09WLTLkra0
http://the.hitchcock.zone/wiki/Bakersfield_Californian_%2811/Oct/2007%29_-_Wasco_man_had_Hitchcock_movie_role
https://www.google.com/maps/place/35%C2%B045'39.0%22N+119%C2%B033'41.0%22W/@35.7561982,-119.5706244,2413m/data=!3m1!1e3!4m2!3m1!1s0x0:0x0
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It’s the accuracy, stupid  
Gerard Heuvelink,  

Wageningen University and ISRIC World Soil Information  

I wrote about the confusion between spatial resolution and 

accuracy in Pedometron 36, but I did not get to discuss 

another accuracy-related issue that I also want to get off 

my chest. This relates to so-called “Frankenstein” maps. 

The term “Frankenstein” map, coined by my colleague and 

friend Tom Hengl, refers to a soil map in which adminis-

trative or otherwise artificial boundaries are clearly visible. 

Even though soil science tells us that such boundaries are 

not real, I will argue in this article that in many cases it is 

perfectly all right to produce or use a Frankenstein map. In 

fact, we should be glad that our maps have Frankenstein 

features.  

Two nice examples of Frankenstein maps are given in Fig-

ure 1. I came to these examples with the help of Marc van 

Meirvenne (Ghent University) and Folkert de Vries 

(Alterra), but there are many more examples and I guess 

that most of you will have come across many other exam-

ples during your pedometrics career. Perhaps you even 

created some!  

Frankenstein maps are not aesthetically appealing, but 

that does not mean that they are useless and should be 

avoided at all costs. The real issue is, as always, the AC-

CURACY of the map. If I were to choose between two 

maps, one of which a Frankenstein map and another free 

from artefacts, while knowing that the Frankenstein map 

is more accurate than the other, I would use the Franken-

stein map. 

Consider Figure 2 on the next page, which addresses a 

synthetic case of the spatial distribution of a soil property 

for a square study area. Assume that the study area is cut 

in two halves by a straight-line country border. The soil 

does not care about country borders, so no border effect 

can be detected in the map shown in the top left panel. 

Next imagine that the soil property was mapped twice: 

first in a global (“continental”) approach, second in a local 

(“country”) approach. The global approach (top centre 

panel) also ignores the country border, so it has no border 

artefacts. The local map (top right panel) was obtained by 

gluing two country maps, and the Frankenstein effect is 

clear. However, similar to what would occur in real-world 

practice, the mapping investment per unit area for the 

global map was lower than that for the local maps. Hence 

the global map is less accurate, as can be seen in the bot-

tom panel of Figure 2. On average, the local map (red line) 

is closer to the true value (black line) than the global map 

(blue line). The visual impression is confirmed by calculat-

ing the root mean squared error, which is 0.70 for the glob-

al map, while it is 0.51 for the local map. Which of the two 

Figure 1. Examples of Frankenstein maps. Left: zoom-in on Scandi-

navia of the European sand content map as published in the Euro-

pean Soil Atlas (http://eusoils.jrc.ec.europa.eu/projects/Soil_Atlas/

Index.html). Sweden sticks out, presumably because the Swedish 

government has a large-scale programme in place to increase the 

sand content of its soils. Right: zoom-in on the Dutch soil map, 

where a vertical straight line marks the border between two glued 

map sheets.  

http://eusoils.jrc.ec.europa.eu/projects/Soil_Atlas/Index.html
http://eusoils.jrc.ec.europa.eu/projects/Soil_Atlas/Index.html


 

 

maps do you prefer? 

For those interested, let me detail the technicalities of the synthetic example (I am also happy to share the R code, just send me an 

email): I simulated a reality on a 400 by 400 grid using unconditional sequential Gaussian simulation, with constant mean equal 

to 5 and a spherical variogram with a nugget of 0.1, a sill of 1.1, and a range of 100. Next I took a simple random sample of 100 

observations and created the global prediction map using ordinary kriging (using the same variogram). For the local prediction 

maps, I first took a simple random sample of 1000 observations, split it into two subsets depending on whether the observation 

locations were to the left or right of the country border, and used ordinary kriging again to interpolate for each country separately1.  

Gerard Heuvelink/It’s the accuracy, stupid 

Figure 2. Synthetic example evaluating the performance of a global and local map of a soil property for an area divided in 

two by a “country” border. Top left: true (unknown) soil property. Top centre: “global” map, obtained by ignoring the country 

border and low investment (i.e. low sampling density) per unit area. Top right: glue of two local maps, one for each country, 

with higher investment per unit area. Bottom: true value (black line) and predictions across a horizontal transect across the 

area. Blue line shows the global prediction, red line the local prediction. Note the Frankenstein effect in the local map when 

crossing the border (discrete jump in red line at vertical dashed line)  

1  The observant reader will notice that in an ideal world the most accurate (and Frankenstein–free!) map would be obtained 

if the two countries worked together, merged their datasets and jointly made a map for both countries, but alas such solu-

tions are not easily achieved in the real world. 



 

 

The synthetic example shown in Figure 2 is not a far-fetched, exotic case that would never occur in real life. Indeed digital soil 

mappers are frequently confronted with this problem, when they need to decide on which covariates to include and which not. 

Some covariates may have significant predictive power but have artefacts as well. If these are included, Frankenstein effects will 

occur. A nice example are the SoilGrids1km maps (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105992), 

which provide global predictions of soil properties at standard depths. These maps were made with regression kriging, with lots of 

covariates taken into account, some of which are categorical and have discrete spatial boundaries that not always occur at 

‘natural’ places. Figure 3 shows a zoom-in on parts of Israel and neighbouring countries, where mapped topsoil bulk density and 

pH clearly show Frankenstein features. In this case, these are likely caused by the Harmonised World Soil Database map and/or 

the Global Lithological Map, that were both used as categorical covariates. Still, it makes perfect sense to include these maps as 

covariates, because the resulting soil property maps are likely more accurate than maps that would not have taken these covari-

ates into account.  

So, Frankenstein maps are perfectly acceptable, because maps 

should be judged on the accuracy with which they represent the 

real world, not on how pretty they look. In fact, I would argue 

that it is not a bad thing that a map has artefacts, because these 

constantly remind us of the fact that the map is only an approxi-

mation of the real world. Many users tend to think that maps are 

perfect, and it is our task to explain them that they are not. 

Frankenstein features provide a very powerful and convincing 

method to do just that. 

Let me end with the wise words of Peter Burrough, from his 1998 

GIS book with Rachael McDonnell (page 220), that are still very 

valid: “The quality of GIS products is often judged by the visual 

appearance of the end-product ..... uncertainties and errors are in-

trinsic to spatial data and need to be addressed properly, not swept 

away under the carpet of fancy graphics displays”. 

Gerard Heuvelink/It’s the accuracy, stupid 
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Figure 3.  Maps of the topsoil bulk density (left) and pH (right) of parts of Israel and neighbouring countries as 

predicted by SoilGrids (www.soilgrids.org, accessed 2 July 2015).  
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http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105992


 

 

A Hydrologic and Land Surface Modeler’s Plea  

community is currently developing “hyperresolution” environ-

mental models. But as we attempt to solve the puzzle of increas-

ing the resolution of our models, we are realizing that there are 

missing pieces—one of them being the availability of global high-

resolution and high-quality soil data. To put things into perspec-

tive, current global models continue to rely on outdated conti-

nental soil datasets (e.g., Harmonized World Soil Database) that 

provide information at spatial scales ranging from 25 to 500 km 

– very far from the sub-100 meter goal. 

In 2013, as I was working on the development of a field-scale 

hydrologic model over the contiguous United States (CONUS), I 

began to address this problem by exploring methods to spatially 

downscale existing legacy soil data. Thankfully, the extensive 

literature on digital soil mapping saved me a lot of time. Having 

worked with the Soil Survey Geographic (SSURGO) database 

over the United States, I was familiar—or at least I thought I 

We need higher resolution soil data in our global environmen-

tal models, and we need it today. Let me explain: since the 

inception of numerical weather forecasting and climate model-

ing in the 1950’s, it has been a persistent challenge to accurate-

ly represent the spatial characteristics of the land surface wa-

ter, energy, and carbon cycles. In the early 1990’s, the land 

schemes of climate models were commonly run over the globe 

at spatial resolutions ranging between 100 and 500 km. Over 

time, the continual increase in high performance computing 

(HPC) resources has allowed the community to increase the 

spatial resolution of these models, which now range globally 

from 5 to 25 kilometers. Although an improvement, the land 

and hydrologic modeling communities argue that this is still 

insufficient, as many important land surface processes need to 

be represented at the field and hillslope scales (~100 meters) 

[Wood et al., 2011; Bierkens et al., 2014]. Thus, the modeling 

Nathaniel W. Chaney, 

Princeton University   
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Figure 1. Spatial disaggregation, harmonization, and gap filling of SSURGO over CONUS using DSMART-HPC and high-

resolution environmental soil covariates to produce the POLARIS dataset.  



 

 

the missing regions in the Mountain West while maintaining the 

general spatial structure of the original SSURGO database. 

All this being said, I am the first to acknowledge that the POLA-

RIS dataset has multiple weaknesses (e.g., at times placing valley

-dominant soils on ridges) that will need to be addressed as we 

move forward. However, that is not the point. The main purpose 

behind this work is to provide a proof of concept of what is possi-

ble in digital soil mapping with high performance computing 

resources that are available to the scientific community. If this is 

not motivation enough, let me whet your appetite: creating PO-

LARIS only required 500,000 core hours, but allocations on 

existing supercomputers can range from millions to hundreds of 

millions of cores hours. In other words, an algorithm such as 

DSMART-HPC could be applied today over the globe at a 30-

meter spatial resolution. 

To conclude, let me return to my original point. The land surface 

and hydrologic modeling communities are already taking ad-

vantage of Big Data and HPC resources to increase the spatial 

resolution of environmental models over the globe. However, 

these models are only as good as the data that is fed into them; 

soil information has long been ignored and the community is 

quickly realizing the importance of accurately representing the 

vertical structure and horizontal spatial distribution of soils in 

these models, especially as we continue to move towards finer 

spatial resolutions.  To make progress, we need the data today 

and not tomorrow. To make this possible, I urge the DSM com-

munity to embrace high performance computing. From my 

(limited) experience, many of the existing algorithms can be 

easily adapted to run on existing supercomputers to make this 

goal a reality. I, for one, will use the data from day one. 

 

N athaniel Chaney is a postdoctor-

al research associate in the Pro-

gram of Atmospheric and Oceanic 
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at the Geophysical Fluid Dynamics 
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revolve around high-resolution land 

surface and hydrologic modeling.  He 

received a B.A. in Applied Mathematics and Earth and Plane-

tary Science from U.C. Berkeley in 2010, and a Ph.D. in Civil 

and Environmental Engineering from Princeton University in 

2015. 

was—with the strengths and weaknesses of legacy soil data 

(e.g., political boundary discontinuities, unsurveyed areas, and 

varying effective spatial resolutions). I was immediately drawn 

towards the emerging spatial disaggregation techniques. As I 

visited Alex McBratney’s group in Sydney in 2014, I quickly 

resolved to implement DSMART—a spatial disaggregation and 

harmonization algorithm [Odgers et al., 2014] over the state of 

Illinois in the United States. Unfortunately, what I learned was 

that these types of algorithms do not scale well beyond relative-

ly small legacy soil datasets and medium size domains. Need-

less to say, these algorithms are computationally prohibitive 

when trying to disaggregate extensive legacy soil databases 

over continental extents. The computational power and storage 

required for these tasks are far beyond what is possible on a 

state-of-the-art personal desktop, and it will remain unachiev-

able for decades. 

However, if we are able to combine the power of tens of thou-

sands of desktops to work together, we can be creative and 

apply these sophisticated spatial disaggregation algorithms 

over continental extents at very high spatial resolutions.  In-

stead of waiting 20 years, this can be done today. This is the 

basic idea behind high performance computing (HPC). Dedi-

cated HPC centers consist of tens to hundreds of thousands of 

computing cores that interact and work in parallel to complete 

a user-defined task. These resources keep becoming more pow-

erful and more accessible to the scientific community (e.g., 

Google Earth Engine). For example, the Blue Waters super-

computer in Illinois has roughly 600,000 computing cores and 

500 petabytes of storage. In simple terms, this machine can 

perform in one hour what it would take a single-core personal 

desktop to run in 68 years. Furthermore, its storage capacity is 

massive—it can store roughly 10% of all words ever spoken by 

humankind. 

Given my background in HPC and access to the Blue Waters 

supercomputer, Alex McBratney and I saw the opportunity to 

extend DSMART to a parallelized framework.  In collaboration 

with Alex McBratney’s group and Jon Hempel at the National 

Cooperative Soil Survey (NCSS) in the United States, we de-

vised DSMART-HPC, an extension of the DSMART algorithm 

that can be run on a supercomputer to spatially disaggregate 

large legacy soil databases over entire continents. As a proof of 

concept, we applied it over CONUS to spatially disaggregate 

and harmonize the SSURGO database. To do this, DSMART-

HPC splits CONUS into 12,500 overlapping blocks and then 

the DSMART algorithm is applied independently on each 

block. Using Blue Waters, this allowed for a reduction in the 

time to complete the task from 500,000 hours (~57 years) to 

under 5 hours. The resulting dataset is POLARIS—Probabilistic 

Remapping of SSURGO—a spatially complete soil class data-

base (with uncertainties) over the entire CONUS at a 30-meter 

spatial resolution. Figure 1 shows the difference between the 

maps of the most probable soil class of the original SSURGO 

product and the corresponding most probable soil class in the 

POLARIS dataset. Notice the ability of the algorithm to infill 
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Noteworthy Articles  
 

The Mathematical Shape of Things to Come 

An article in Quanta Magazine highlights the new Data Driven research. In pedometrics and digital soil mapping we dealt 

a lot with big data, and in many ways we draw conclusions and gain understanding on soil based on empirical relation-

ships. Science writer Jennifer Oullette wrote: Today’s big data is noisy, unstructured, and dynamic rather than static. It 

may also be corrupted or incomplete. Researchers need new mathematical tools in order to glean useful information 

from the data sets. The article presented an example on topological data analysis (TDA) that reduce large, raw data sets 

of many dimensions to a compressed representation in lower dimensions without sacrificing the most relevant topologi-

cal properties. Are we ready to use this kind of approach for large soil data such as hyperspectral imaging?  

 

Sleeping Beauties 

Sleeping beauty in a scientific publication is a paper that goes unnoticed for a long time, and suddenly attracts many 

citations. The term was proposed by Anthony van Raan in 2003. And last month the concept was rediscovered by a group 

in Indiana University and published in PNAS and made a lot of fuss in the media. The authors listed the top 15 Sleeping 

Beauties which is a bit unexpected, considering some of the papers are already well known. Soil scientists will quickly 

recognise the top sleeping beauty paper authored by Freundlich which was apparently awakened in 2002. There is also 

Langmuir, and Washburn (or the capillary rise equation). Pedometricians will recognise the most commonly used meas-

ure of linear correlation by Pearson (1901), which was apparently awakened in 2002 as well. 

Do you know of any Sleeping beauty papers in Soil Science?  

 

Balanced Sampling for Soil Survey 

Dick Brus, our soil sampling expert, recently proposed the use of Balanced Sampling for Soil Survey. Pedometricians 

usually optimized their sampling strategy to cover the geographical space, feature (covariate) space or both. Now Dick 

found that there is Balanced Smapling which is commonly used in socioeconomic study has not been noticed in soil sci-

ence. It has several advantages, one of them is that Latin hypercube sampling is a special case of a balanced sampling. In 

addition, if balanced sampling is applied, the inclusion probabilities of the samples can be calculated and optimised. 

Thus samples obtained by this design can be used both in design-based or model-based statistical  inference. Dick illus-

trated its application with examples in soil surveys. The paper is published online in the upcoming September issue of 

Geoderma.  

 

Optimal spatial stratification using digital soil maps 

Jaap de Gruijter and colleagues rcently developed a new method to optimize spatial stratification and allocation for strat-

ified random sampling of points. The method uses a grid of points with uncertain predictions of the target variable (for 

example a digital soil map). The objective function of the sampling stratification is defined by generalized distances be-

tween pairs of grid points, determined by the difference between the predictions, the variances of the prediction errors, 

and their covariance as a function of the geographical distance. The authors used an iterative reallocation algorithm to 

minimise this objective function. The resulting stratifications represent solutions on a continuous scale between two 

extremes: for errorless predictions, a stratification close to those by the cum-root-f method, and for entirely uninforma-

tive, a compact geographical stratification based only on the locations of the grid points.  The authors illustrated it with a 

https://www.quantamagazine.org/20131004-the-mathematical-shape-of-things-to-come/
http://www.pnas.org/content/early/2015/05/20/1424329112.abstract
http://www.nature.com/news/sleeping-beauty-papers-slumber-for-decades-1.17615
http://www.nature.com/news/sleeping-beauty-papers-slumber-for-decades-1.17615
http://www.sciencedirect.com/science/article/pii/S0016706115001238
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soil survey example. The study was published in the Journal of Survey Statistics and Methodology.  

 

Block correlation and the spatial resolution of soil property maps made by kriging 

Murray Lark recently proposed a new measure of the uncertainty of block kriging predictions. This is in response to the 

different resolution issues in digital soil maps. Block correlation is the expected correlation of the block prediction with the 

value that it estimates: the spatial mean of the target variable across the block. This correlation can be computed if the vario-

gram and disposition of sample points are known. Using a hypothetical and real examples, Murray showed that he can cal-

culate the block correlation as a function of block length and grid spacing. This paper is published in Geoderma. 

 

Can citizen science assist digital soil mapping? 

David Rossiter and colleagues pose this question in a recent article published in Geoderma.  

While there are few citizen soil science projects, include the OPAL Soil and Earthworm Survey, GLOBE, and mySoil, but 

these are not aimed at soil mapping. The authors proposed digital soil mapping  citizen science initiatives for countries with 

and without well-organized extension and advisory services and existing soil surveys, and identify types of citizens who 

might be motivated to contribute to such initiatives. Contributions could be in the form of tacit knowledge, opportunistic or 

protocol-guided new information, information from precision agriculture, and physical samples submitted for analysis. 

The authors concluded that “the potential of citizen-provided information to accelerate and improve DSM projects seems 

too great to ignore. The benefits of citizen science DSM-related projects may go beyond the immediate aim of improving soil 

maps. In the longer term such projects would likely enhance the “connectivity” between soil and citizen.”  

http://jssam.oxfordjournals.org/content/3/1/19.full
http://www.sciencedirect.com/science/article/pii/S001670611500169X
http://www.sciencedirect.com/science/article/pii/S0016706115001548


 

 

 

21 

The 4th global workshop on Proximal 
Soil Sensing (Hangzhou, China, 12-15 May 2015 ) 

Marc Van Meirvenne, Chairman of the WG-PSS  

Since its establishment in June 2008, the Working Group on Proximal Soil Sensing organises biannually a global workshop, and 

this year the event took place at the Zhejiang University in the city of Hangzhou, relatively close to Shanghai, China. The overall 

theme was “Sensing soil conditions and functions”. The organisation was in the hands of Professor Zhou Shi of the Institute of 

Agricultural Remote Sensing and Information System of the College of Environmental and Resource Sciences of the Zhejiang 

University.  

The workshop was a success. There were 112 registered participants from 16 countries and all inhabitable continents, and as 

usually the majority of participants (87) came from the organising country. The workshop covered three days, two days of plena-

ry and poster sessions and one day with a field trip to experimental fields and the surrounding areas of Hangzhou. The two days 

of plenary sessions were subdivided according to different themes, each with a keynote speaker. These were (in chronological 

order): 

 Raphael Viscarra Rossel “Baseline estimates of organic carbon and uncertainty by proximal soil sensing and soil spectrosco-

py”(CSIRO, Australia),  

 Minzan Li “Development of soil nutrient sensors with spectroscopy” (China Agricultural University, China),  

 Immo Trinks “State-of-the-art geophysical archaeological prospection and virtual archaeology” (Ludwig Boltzmann Insti-

tute for Archaeological Prospection, Austria), 

 Richard Webster “Field sampling for proximal soil sensing), Advances in Field Spectroscopy for Soil Analyses” (Rothamsted 

Research, UK), 

 Abdul Mouazen “Advances in Field Spectroscopy for Soil Analyses” (Cranfield University, UK). 

 

The major attention of the workshop went to soil spectroscopy, reflecting the intensively conducted research on this promising 

technology. The major focus of application was agricultural, but other functions of soil, such as environmental health and pro-

tection of the buried cultural heritage, were also covered. There is a clear trend towards multi-signal and multi-sensor systems 



 

 

and a widening of soil sensor applications.  

One session was devoted to a plenary discussion on the future planning and strategy of our working group. During this session 

it was agreed to join the Pedometrics-2017 initiative for a joint conference of the commission and all its working groups in Wa-

geningen in The Netherlands, between 26 June and 2 July 2017. Given the frequently organised conferences and workshop by 

the commission on Pedometrics and its four working group, often with overlapping themes, it might be good to explore further 

such initiatives for jointly organised activities. It was also decided to expand the focus of our working group by seeking joint 

activities with other organisations dealing with soil sensing applications such as archaeology, civil engineering, environmental 

sanitation and protection, natural capital assessment, image processing… Finally, it was discussed which outcome of the work-

shop was to be preferred. The choice fell on a special issue of a scientific journal and it was decided to contact “Biosystems En-

gineering”. Dr. A. Mouazen agreed to act as the main supervisor of this special issue. 

The workshop was followed by an extra day with two hands-on courses: “Sensors as data source and data acquisition methods” 

and “Data processing using R software”. 

This 4th workshop of our working group was excellently and efficiently organised by the team of Prof. Shi. We are very grateful 

to Prof Shi and his collaborators!  

The 4th global workshop on Proximal Soil Sensing 
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The inaugural Global Workshop on Digital Soil Morphometrics was held in Madison (Wisconsin, USA), from the 1st to the 4th 

June 2015. The event, organised locally by Alfred Hartemink and Budiman Minasny at the wonderful University of Wisconsin 

campus. The workshop was held in the frame of the International Year of Soil, and run under the auspices of the International 

Union of Soil Science (IUSS) --- in particular of the Working Group on Digital Soil Morphometrics which is led by Alfred. This 

Working Group is the most recent one within the IUSS, and it is great to see that despite being still at an emerging state, this 

group is extremely dynamic and energetic. 

Digital Soil Morphometrics (Alex McBratney suggested the acronym "DSMorph" to mark the distinction with Digital Soil Map-

ping) is a relatively newcomer in the soil science world, and has been formalised by Alfred and Budiman in their seminal 2014 

paper (Hartemink and Minasny, 2014). It is defined as "the application of tools and techniques for measuring, mapping and 

quantifying soil profile attributes and deriving continuous depth functions". It is acknowledging the emergence of new tools and 

quantitative techniques that can be used in soil profile descriptions --- a domain where techniques and toolkits have been quite 

stable for the past 60 years. 

The workshop certainly was a great illustration of the dynamism of this emerging discipline. Around 70 participants from all 

around the world converged to Madison: Africa (Tanzania), Asia, (Taiwan), Europe (Belgium, Germany, Hungary, UK), North 

America (USA, Canada), Oceania (Australia, New Zealand), and South America (Brazil). 35 oral presentations, in addition to 7 

keynote presentations, were given over two and a half days on the campus. But of course, that was after the very first day of the 

workshop, which very fittingly was spent in the field. Led by Birl Lowery, with the support of the other colleagues from the Uni-

versity of Madison, we had a fantastic tour of the diverse landscapes and soils of Wisconsin. The first stop was at the West Madi-

son Agricultural Research Station, where we had the opportunity to appreciate (and quantify!) the variety of soils that can occur at 

quite a short scale: 2 soil pits were dug about 50 meters apart. The large width of exposed soil was also a good reminder of the 

short-scale, horizontal variations that occur when sampling soils. The second stop was on a farm in the Central Sands region. 

After a well-earned lunch stop, we had the opportunity to inspect the soil pits using a variety of sensors: portable XRF, portable 

Vis-NIR, penetrometer... completing of course the more traditional tools of the pedologist. The final stop of the day was at Devil's 

Lake State Park, where everyone enjoyed the local brews and cheeses that make the pride of Wisconsin, followed by a very scenic 

walk to wash these down. 

Back on the University Campus, day 2 started with a keynote from Alex McBratney, who kicked off the Workshop with an intro-

ductory perspective to Digital Soil Morphometrics. The Workshop was split into a range of thematic sessions, spanned over 2 and 

a half days: 

 Prediction of soil properties on the soil profile itself 

 Imaging techniques on the soil profile 

 Soil depth functions 

 The role of Digital Soil Morphometrics in Digital Soil Mapping (DSMorph for DSM!) 

Amongst the keynote presentations, the presentations of Erika Michéli and Jon Hempel, who are both involved in the Universal 

Soil Classification, did a very good job at putting the workshop in perspective with the latest developments in soil classification 

techniques. Erika and Jon demonstrated how Digital Soil Morphometrics techniques are central, through the concept of depth 

functions, to the emerging Universal Soil Classification system, and to a variety of other soil information products. The question 

of how to derive such depth functions was at the core of Budiman Minasny's keynote talk: Budi mentioned in particular the role of 

high resolution scans of the soil profile to do so. The development of the concept of depth functions for soil classification is also 

generating the need to create a collaborative depth functions library. 

A range of presentations gave an overview of the sensing techniques that can be useful in Digital Soil Morphometrics. Daniel Hir-

mas and Brian Slater, for example, showed interesting approaches to capture the profile's surface variations at very high resolu-

tion, and derive a variety of indicators related to soil structure and soil texture. In his keynote, Markus Steffens also demonstrated 

the use of a  hyperspectral camera on the surface of soil profiles, allowing to derive predictions of soil attributes at a very fine 

scale. Taking a different approach, another interesting keynote was provided by Matt Aitkenhead: Matt showed how a simple 

digital camera from a smartphone can be combined with environmental data to put soil organic carbon estimates directly in the 
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Inaugural Workshop on Digital 
Soil Morphometrics 

Pierre Roudier, 

Research Division of Soils and Landscapes, New Zealand  



 

 

hands of the farmer or casual user. Different users, different technologies, and different techniques. Darrell Schulze presented a 

very promising approach to the visualisation of soil structure using computer graphics, and procedural modelling. While Darrell's 

project is focusing on the visualisation of soil structure, several of us noted that those tools could be investigated to measure soil 

structure. Finally, Jose Dematte's presentations underlined the value of these tools as a data provider for digital soil mapping prod-

ucts. 

The Workshop concluded on an excellent discussion session led by Alex McBratney, and concluded by Alfred Hartemink, who 

announced that the next Workshop on Digital Soil Morphometrics will be organised in Aberdeen (Scotland) by Matt Aitkenhead 

and his team at the James Hutton Institute. On light of the week of discussion in Wisconsin, and I certainly hope to be able to take 

part to the next workshop. 

Finally, I would address a warm word of congratulations to Alfred and Budiman for the organisation and leadership: I think the 

Workshop was a great success, and I enjoyed very much every aspect of it. I also want to thank and congratulate the very helpful 

team from the Department of Soil Science who helped to organise and run the conference (Birl Lowery, Bill Bland, Jenna Grauer-

Gray, Jenifer Yost, Kabindra Adhikari, Luis Reyes-Rojas, and Benito Bonfatti).  Photos from the workshop is available here. 
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